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Abstract

The internal validity of observational study is often subject to debate. In this
study, we define the counterfactuals as the unobserved sample and intend to
quantify its relationship with the null hypothesis statistical testing (NHST).
We propose the probability of a robust inference for internal validity, that is,
the PIV, as a robustness index of causal inference. Formally, the PIV is the
probability of rejecting the null hypothesis again based on both the observed
sample and the counterfactuals, provided the same null hypothesis has
already been rejected based on the observed sample. Under either fre-
quentist or Bayesian framework, one can bound the PIV of an inference based
on his bounded belief about the counterfactuals, which is often needed when
the unconfoundedness assumption is dubious. The PIV is equivalent to sta-
tistical power when the NHST is thought to be based on both the observed
sample and the counterfactuals. We summarize the process of evaluating
internal validity with the PIV into a six-step procedure and illustrate it with an
empirical example.
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Causal inferences are often made based on observational studies, which

allow researchers to collect relatively large amounts of data with low cost

per research question, compared to randomized experiments (Rosenbaum

2002; Schneider et al. 2007; Shadish, Cook, and Campbell 2002). Internal

validity, which refers to whether one can make causal inference between two

variables given they are correlated, is frequently challenged and difficult to

assess for observational studies (Imai, King, and Stuart 2008; Imbens and

Rubin 2015; Murnane and Willett 2011; Rosenbaum 2002, 2010; Rosen-

baum and Rubin 1983a; Shadish et al. 2002). To characterize concerns about

internal validity in observational studies, we adopt the concept of potential

outcome, which refers to the outcome of every subject under every possible

treatment (Holland 1986; Rubin 2007, 2008). A fundamental issue is that a

subject can only choose one treatment at a time and thus only one potential

outcome is observable. This renders all other potential outcomes missing

(Imbens and Rubin 2015; Rubin 2005). Essentially, causal inference is

treated as a missing data problem where the missing outcomes are assumed

to be missing at random (MAR) conditional on a set of covariates, an

assumption known as “unconfoundedness” (Imbens 2004; Rosenbaum and

Rubin 1983b). Given the difficulty of justifying the unconfoundedness

assumption, one may suspect the missing potential outcomes (i.e., counter-

factual outcomes) are not MAR conditional on controlled covariates (Heck-

man 2005; Rosenbaum 1987; Rosenbaum and Rubin 1983a). This implies a

missing confounder may exist and consequently the missing potential out-

comes may not be comparable to the observed outcomes.

It is noteworthy that observational studies only approximate the missing

outcomes based on this assumption; however, if important variables are

omitted, such approximation would be misleading. The robustness of a cau-

sal inference is defined in this context as whether a causal relationship

between two variables can still hold when the unconfoundedness assumption

fails. The robustness of a causal inference is evaluated based on one’s belief

about counterfactual outcomes or missing confounders in order to make a

decision about whether this inference is trustworthy (Frank 2000; Frank et al.

2013). We leverage this logic to quantify the robustness of a causal inference

based on one’s belief about the mean counterfactual outcomes for the treated

subjects and the controlled subjects. To do this, we first define counterfactual

outcomes as the unobserved sample and incorporate such unobserved sample

into the observed sample to form the ideal sample, which, as indicated by its

name, is ideal for making a causal inference (Frank et al. 2013; Rubin 2004,

2005; Sobel 1996). We focus the mean counterfactual outcomes (rather than

individual values of counterfactual outcomes) because they are sufficient
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statistics for causal inference in a simple context. We further define the

probability of a robust inference for internal validity (henceforth, we abbre-

viate it as the PIV) based on the ideal sample as the robustness index of

internal validity. Our analytical procedure aims to bound the PIV of an

inference based on one’s belief and inform the robustness of a causal infer-

ence based on such bound(s). We apply our approach to Hong and Rauden-

bush (2005) which estimated a negative effect of kindergarten retention on

reading achievement. Although Hong and Raudenbush analyzed a nationally

representative sample mitigating concerns about external validity, the treat-

ments (i.e., retained in kindergarten vs. promoted to the first grade) were not

randomly assigned in this observational study, raising potential concerns

about internal validity (Allen et al. 2009; Frank et al. 2013; Hong 2010;

Schafer and Kang 2008).

A Survey of Similar Approaches

Sensitivity Analysis

Sensitivity analysis (Rosenbaum 1986, 1987, 1991, 2002, 2010; Rosenbaum

and Rubin 1983a) addresses the influence of a missing confounder on the

estimates and inference for regression and nonparametric tests, and more

importantly, it connects the violation of unconfoundedness assumption to

the violation of random assignment in matched pairs. Therefore, it informs

the internal validity of a matching design. Other literature on sensitivity

analysis has similar orientation toward missing confounders (Copas and Li

1997; Hosman, Hansen, and Holland 2010; Lin, Psaty, and Kronmal 1998;

Masten and Poirier 2018; Robins, Rotnitzky, and Scharfstein 2000; Vander-

Weele 2008). The PIV shares the objective of checking the sensitivity of

results to potential violation of the unconfoundedness assumption with the

sensitivity analysis, but the PIV is not limited to a single type of design (like

matching) or estimation (like regression). In fact, the PIV can be employed in

any design that deemed appropriate for observational studies.

Bayesian Sensitivity Analysis

Bayesian sensitivity analysis (BSA; McCandless and Gustafson 2017;

McCandless, Gustafson, and Levy 2007; McCandless et al. 2012) parame-

terizes the models for explaining the outcome and the unmeasured confoun-

der carefully, so that it can identify the key parameters of confounding effect

and examine their impacts on the estimate of treatment effect under a Baye-

sian framework. BSA has two main advantages: First, the data augmentation
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in Bayesian modeling allows one to build a model for the unobserved con-

founder and repeatedly draw random samples of it. As a result, one would get

expected distributions of the confounding and treatment effect parameters.

Additionally, BSA offers modeling flexibility through prior specification.

Comparing to BSA, the implementation and interpretation of the analysis

for the PIV would be much easier as BSA is built on complicated Markov

chain Monte Carlo algorithms.

The Robustness Indices of Causal Inferences

The robustness indices of causal inferences (Frank 2000; Frank et al. 2013)

quantify the strength of internal validity in terms of the impact of an unmea-

sured confounding variable or the proportion of observed cases can be

replaced by the null cases that an inference can afford. The PIV is inherently

connected to both papers as it starts with the decision rules and the missing

data perspective shared by Frank et al. (2013) and relies on the relationship

between the estimate of average treatment effect and null hypothesis statis-

tical testing (NHST), which has been studied by Frank (2000). The PIV is

different from the robustness indices because it requires a bounded belief

about counterfactual outcomes (or a missing confounder), and it is a prob-

abilistic index which is shown to be equivalent to the statistical power.

Manski’s Bounds of Treatment Effect

Bounding treatment effect is proposed by acknowledging the issue of non-

identification of the estimate of average treatment due to counterfactual

outcomes (Manski 1990, 1995; Manski and Nagin 1998). Different bounds

of treatment effect can be obtained by imposing different assumptions on the

counterfactuals, and the bounds of treatment effect would be tightened by

making stronger assumption(s). Both the PIV and the bounds of treatment

effect proposed by Manski consider the situations when the unconfounded-

ness assumption is implausible so that one has to form a belief about counter-

factual outcomes. Different from the PIV, Manski’s bounds are not built on

NHST and the parametric (normality) assumption. Rather, the bounds offer

insights about the worth of a causal inference through exploring loss-based

alternatives rooted in the context of program evaluation. Furthermore, Man-

ski’s bounds leverage nonlinear relationships to determine constraints on

parameter values, whereas the PIV is built on comparison of means and

quantifies the likelihood an inference would hold, assuming normality.
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Replication Probability

Various replication probabilities have been proposed for two main rea-

sons: First, they purpose safeguarding readers from the misguidance and

misinterpretation of p values. Second, they are used to accentuate that the

true scientific significance is about replicability rather than statistical

significance (Boos and Stefanski 2011; Greenwald et al. 1996; Killeen

2005; Posavac 2002; Shao and Chow 2002). The PIV is in fact the

probability of replicating a significant result in observational study, and

it is more akin to prep (Killeen 2005; Iverson, Wagenmakers, and Lee

2010) which is the probability of obtaining an effect with the same sign

as the observed one. Different from prep and all other replication prob-

abilities, the PIV takes counterfactual outcomes into consideration and

therefore it is not a function of p value. Therefore, it does not inherit any

weakness from p value like most proposed replication probabilities do

(Doros and Geier 2005).

Counterfactual Outcomes as the Unobserved Sample

Research Setting

This article targets observation studies with two groups, that is, the treatment

group and the control group. Furthermore, we only consider observational

studies with representative samples so that we can focus on internal validity.

This article focuses on the simple group-mean-difference estimator (referred

to as the simple estimator henceforth) of an average treatment effect, which

computes the difference between the adjusted mean treated outcome and the

adjusted mean control outcome. The adjusted means can be calculated based

on propensity score matching or stratification and perceived as valid estima-

tors of true means of treated outcome and control outcome when the uncon-

foundedness assumption holds.

Definitions

Definition 1: The unobserved sample refers to the collection of the coun-

terfactual outcomes of all sampled subjects. The unobserved treated sam-

ple refers to the collection of the counterfactual outcomes of the sampled

subjects who actually received the control. The unobserved control sam-

ple refers to the collection of the counterfactual outcomes of the sampled

subjects who actually received the treatment.
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Example: The unobserved sample of Hong and Raudenbush (2005) is the

collection of counterfactual reading scores of sampled students in their study.

Specifically, this unobserved sample can be decomposed into the unobserved

control sample which is the collection of reading scores of retained students

had they all been promoted to first grade and the unobserved treated sample

which is the collection of reading scores of promoted students had they all

been retained in kindergarten.

Figure 1 illustrates the conceptualization of the unobserved sample in

Hong and Raudenbush (2005) for the simple estimator. The observed out-

come Y ob
r;i symbolizes the reading score of any retained student whose coun-

terfactual outcome is Y un
p;i . Likewise, the observed outcome Y ob

p;j represents the

reading score of any promoted student whose counterfactual outcome is Y un
r;j .

The unobserved sample consists of counterfactual outcomes Y un
p;i and Y un

r;j .

Finally, we define the ideal sample as follows:

Definition 2: The ideal sample refers to the combination of the observed

sample and the unobserved sample. The ideal treated sample refers to the

combination of the observed treated sample and the unobserved treated

sample. The ideal control sample refers to the combination of the

observed control sample and the unobserved control sample.

Drawing on the definitions above, we argue that it is the unobserved

sample that induces the bias which undermines internal validity. The unob-

served sample can be perceived as the gap between the observed sample

and the ideal sample needed for insuring internal validity. The unconfound-

edness assumption implies the unobserved sample is ignorable based on a

Figure 1. The unobserved sample in Hong and Raudenbush (2005) for the simple
estimator.

1952 Sociological Methods & Research 51(4)



set of covariates, that is, the unobserved sample will essentially be the same

as the observed sample conditional on the set of covariates. Given this

assumption is frequently and constantly challenged, our goal is to quantify

the robustness of the inference by discovering how the unobserved sample

affects the NHST.

Sample Statistics and Notation

This section introduces the notations of the sample statistics defined based

on the observed, unobserved, and ideal samples. In general, the observed

sample statistics are all fixed and known quantities since the observed

sample is held fixed when we consider using the PIV. The unobserved and

ideal sample statistics, on the other hand, are unknown quantities of main

interest. In this context, d is a random variable representing the population

average treatment effect.

The observed sample statistics (known and fixed): d̂ is the simple

estimator of the average treatment effect based on the observed

sample, with d̂ ¼ �Y
ob

t � �Y
ob

c where �Y
ob

t denotes the adjusted mean

outcome of the observed treated subjects and �Y
ob

c denotes the

adjusted mean outcome of the observed control subjects, such

as adjusted based on a propensity score design. The terms ŝ2
t

and ŝ2
c denote the variances of the treated and the control out-

comes in the observed sample, respectively. The observed sample

size is nob and the proportion of treated subjects in the observed

sample is p.

The unobserved sample statistics (focused unknown): �Y
un

t and �Y
un

c denote

the mean outcomes in the unobserved treated sample and the unob-

served control sample, respectively.

The ideal sample statistics (unknown due to the unobserved sample): d̂
id

is the simple estimator of average treatment effect based on the ideal

sample and SE
d̂

id is its standard error. �Y
id

t and �Y
id

c denote the mean

outcomes in the ideal treated sample and the ideal control sample,

respectively, and their difference is d̂
id

. Lastly, the variance of �Y
id

t and
�Y

id

c are denoted by ft and fc, respectively.

We are interested in the distribution of d, and the randomness of d is

mainly due to the counterfactual outcomes which are potentially different

from the observed outcomes. Therefore, the distribution of d needs to be

defined based on the ideal sample, such that both counterfactual and

observed outcomes are included. As a result, the distribution of d is defined
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by the unobserved and observed sample statistics (or, equivalently, just the

ideal sample statistics).

The PIV

The PIV is rooted in NHST context. To conduct a causal inference, the null

hypothesis H0: d ¼ d0 is assumed to be tested against the alternative hypoth-

esis Ha: d 6¼ d0 (d0 is usually 0).1 Here we define d# to be the threshold of

rejecting the null hypothesis (and thus finding a significant effect), and for

NHST d# is just the product of a critical value C and the standard error of d̂.

Furthermore, the PIV is meaningful when the null hypothesis has been

rejected based on the observed sample, and we are interested in whether the

null hypothesis would be rejected if counterfactual outcomes were known.

Frank et al. (2013) provided the following decision rules on whether a

causal inference will be invalidated due to limited internal validity: Given d̂
is significantly positive, an inference will be invalidated if d̂ > d#> d.

Given d̂ is significantly negative, an inference will be invalidated if

d̂ < d#< d. Since d̂ is fixed and exceeds the threshold, the aforementioned

decision rules can be simplified as d < d# for a significantly positive d̂ or

d > d# for a significantly negative d̂. The decision rules can be also inter-

preted in the opposite way: An inference cannot be invalidated if d > d# for

a significantly positive d̂ or d < d# for a significantly negative d̂. Drawing

on this interpretation, the PIV is defined as the probability that an inference

cannot be invalidated for the ideal sample Did. Specifically, the PIV is

defined as follows for a significantly positive d̂

Pðd > d#jDidÞ: ð1Þ

Likewise, the PIV is defined as follows for a significantly negative d̂

Pðd > d#jDidÞ: ð2Þ

It’s noteworthy that the PIV in equations (1) and (2) are actually the

simplified version of Pðd > d#jd̂ > d#;DidÞ and P ðd < d#jd̂ < d#;DidÞ,
respectively. Given the ideal sample must contain the observed sample, we

can ignore the condition d̂ > d# or d̂ < d# as they should be conveyed by the

ideal sample Did. The PIV essentially is the probability of rejecting the null

hypothesis again for the ideal sample, given the same null hypothesis has

been rejected for the observed sample, when the counterfactual outcomes has

been taken into consideration. By definition, the PIV is the statistical power
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of retesting the null hypothesis: d ¼ 0 versus the alternative hypothesis:

d ¼ d̂
id

(d̂
id 6¼ 0) based on the ideal sample. When such hypothesis testing

is based on either normal or student T distribution, the PIV has the following

relationship with the T ratio T ¼ d̂
id

SE
d̂

id
:

For a significantly positive d̂ and a critical value C, we have

probitðPIV Þ ¼ T � C: ð3Þ

For a significantly negative d̂ and a critical value C, we have

probitðPIV Þ ¼ C � T : ð4Þ

Note here that equations (3) and (4) will only be approximately true for

studies with small sample sizes and typically C is chosen based on the level

of significance. For example, C would be 1.96 if d̂ is significantly positive

and the level of significance is 0.05.

The Relationship Between the PIV and the Mean
Counterfactual Outcomes

If the treated outcome and the control outcome are independent and roughly

normally distributed, the distribution of d based on the ideal sample would be

as follows given their variances are ŝ2
t ; ŝ

2
c :

djDid*Nð �Y
id

t � �Y
id

c ;ft þ fcÞ: ð5Þ

where,

�Y
id

t ¼ ð1� pÞ �Y
un

t þ p �Y
ob

t ;

ft ¼
ŝ2

t

nob
;

�Y
id

c ¼ p �Y
un

c þ ð1� pÞ �Y
ob

c ;

fc ¼
ŝ2

c

nob
:

ð6Þ

Here we need to conceptualize �Y
un

t and �Y
un

c . For example, for Hong and

Raudenbush (2005), �Y
un

t is the mean reading score of the promoted students

had they been retained in the kindergarten, and �Y
un

c is the mean reading score
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of the retained students had they been promoted to the first grade. The mean

outcome in the ideal treated (or control) sample is the weighted average

between the mean outcome in the unobserved treated (or control) sample

and the mean outcome in the observed treated (or control) sample, while the

weight is defined by p. The simple estimator of average treatment effect, that

is, d̂
id

, equals �Y
id

t � �Y
id

c .

It’s remarkable that results equations (5) and (6) can be derived in a either

frequentist fashion or Bayesian fashion (see derivations in Online Appendix,

which can be found at http://smr.sagepub.com/supplemental/), and therefore,

it has both frequentist and Bayesian interpretations (Li 2018). In frequentist

world, the unobserved sample is part of the ideal sample so that �Y
un

t and �Y
un

c

will shape the distribution of d as well as the final inference that are built on

the ideal sample. In Bayesian world, the prior is conceived to be built on the

unobserved sample and the likelihood is built on the observed sample, which

is consistent with the literature stating that prior can be treated as a function

of the data of particular interest (Diaconis and Ylvisaker 1979, 1985; Frank

and Min 2007; Hoff 2009; Pearl and Mackenzie 2018). Strictly speaking, �Y
un

t

and �Y
un

c are the prior parameters in the Bayesian world rather than the sample

statistics that are sufficient for the distribution of d in the frequentist world.

Results equations (5) and (6) show that the distribution of d conditional on

Did is determined by �Y
un

t ;
�Y

un

c based on the unobserved sample as well as by

�Y
ob

t ;
�Y

ob

c ; n
ob based on the observed sample. It further indicates that the probit

link of the PIV is a function of �Y
un

t and �Y
un

c , conditional on the observed

sample statistics p; nob; �Y
ob

t ;
�Y

ob

c ; ŝ
2
t ; ŝ

2
c and the decision threshold d# for

rejecting the null hypothesis. We formalize this relationship as follows:

For a significant positive d̂, we have

probitðPIV Þ ¼
ffiffiffiffiffiffi
nob
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2

t þ ŝ2
c

q ð1� pÞ �Y
un

t � p �Y
un

c þ �Y
ob

t þ �Y
ob

c

� �
� p� �Y

ob

c � d#
h i

:

ð7Þ

For a significant negative d̂, we have

probitðPIV Þ ¼
ffiffiffiffiffiffi
nob
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2

t þ ŝ2
c

q p �Y
un

c � ð1� pÞ �Y
un

t � �Y
ob

t þ �Y
ob

c

� �
� pþ �Y

ob

c þ d#
h i

:

ð8Þ
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Note that the decision threshold d# could be either a fixed value that is

pragmatically set based on transaction cost/policy implication/literature review

(Frank et al. 2013) or a statistical threshold that is a product between the

critical value and the standard error. When d# is a statistical threshold, it equals

C � SE
d̂

id , where the critical value C is chosen based on the level of sig-

nificance. SE
d̂

id , which refers to the standard error of the simple estimator of

average treatment effect based on the ideal sample, is computed as follows:

SE
d̂

id ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ft þ fc

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2

t þ ŝ2
c

nob

s
: ð9Þ

Resultantly, the probit functions in equation (7) becomes

probitðPIV Þ ¼
ffiffiffiffiffiffi
nob
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2

t þ ŝ2
c

q ð1� pÞ �Y
un

t � p �Y
un

c þ �Y
ob

t þ �Y
ob

c

� �
� p� �Y

ob

c

h i
� C:

ð10Þ

Likewise, the probit function in equation (8) becomes

probitðPIV Þ ¼
ffiffiffiffiffiffi
nob
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2

t þ ŝ2
c

q p �Y
un

c � ð1� pÞ �Y
un

t � �Y
ob

t þ �Y
ob

c

� �
� pþ �Y

ob

c

h i
þ C:

ð11Þ

Drawing on the results above, one can bound the PIV based on a belief

about �Y
un

t and �Y
un

c . For example, if one believe that the mean reading score of

the retained students had they been promoted to the first grade (i.e., �Y
un

c ) equals

45.2 and the upper bound of the mean reading score of the promoted students

had they been retained instead (i.e., �Y
un

t ) is 45.78 (their observed mean reading

score), the lower bound of the PIV of Hong and Raudenbush (2005) would be

0.77. If one changes his belief to be �Y
un

t � 45:78 and �Y
un

c � 44:77, the lower

bound of the PIV of Hong and Raudenbush (2005) would be 0.73 instead.

Example: The Effect of Kindergarten Retention on
Reading Achievement

Overview

Alexander, Entwisle, and Dauber (2003) established kindergarten retention

as a widespread phenomenon in the United States and with profound impacts
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for both promoted children and retained children, and therefore, it has long

been a controversial issue. To address such controversy, Hong and Rauden-

bush (2005) conducted an analysis that combined a multilevel model con-

trolling for logits of propensity scores and propensity score strata to evaluate

the effects of kindergarten retention policy and actual kindergarten retention

on students’ academic achievement. They used a nationally representative

sample that contained about 7,639 students and 1,070 schools. Drawing on

this design, Hong and Raudenbush (2005) estimated the effect of kindergar-

ten retention on students’ reading achievement as �9.01 with standard error

of 0.68, which amounted to a significant effect whose size is about 0.67. In

light of this considerable effect, Hong and Raudenbush (2005) concluded

that “children who were retained would have learned more had they been

promoted” and therefore “kindergarten retention treatment leaves most retai-

nees even further behind” [page 220].

Nevertheless, the internal validity of Hong and Raudenbush (2005) is

subject to debate because propensity score analysis is built on the assumption

of unconfoundedness, which implies all confounding variables are able to be

observed and controlled in the causal model. However, as argued by Frank

et al. (2013), some confounding variables may not be fully measured and

controlled, incurring selection bias in the estimate. In cases such that an

omitted variable was negatively correlated with kindergarten retention and

positively correlated with reading achievement, the negative effect of kin-

dergarten retention could be biased, and thus their inference would be inva-

lidated if such a variable were taken into account.

To address the concern about the internal validity of Hong and Rauden-

bush’s inference, we propose an analytical procedure that employs the PIV

and its relationship with the mean counterfactual outcomes. This analytical

procedure comprises six steps: (1) get the observed sample statistics, (2)

choose critical value C,2 (3) obtain the relationship between the PIV and the

mean counterfactual outcomes, (4) state belief about the mean counterfactual

outcomes, (5) bound the PIV, (6) conclusion.

Quantifying the Robustness of the Inference of Hong
and Raudenbush (2005)

1. Get the observed sample statistics: The required observed sample

statistics are as follows: �Y
ob

t ¼ 36:77; �Y
ob

c ¼ 45:78; ŝ2
t ¼ 143:26;

ŝ2
c ¼ 138:83; nob ¼ 7; 639; p ¼ 0:0617 (Frank et al. 2013). In this

context, �Y
ob

t refers to the observed mean reading score of the retained
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students, and �Y
ob

c refers to the observed mean reading score of the

promoted students.

2. Choose critical value C: Since Hong and Raudenbush (2005) reported

the effect of kindergarten retention was significantly negative, we

choose C as �1.96 which means d# ¼ �1:96� SE
d̂

id .

3. Obtain the relationship between the PIV and the mean counterfactual

outcomes: Once the observed sample statistics and C are plugged into

the probit model equation (11), the probit model for Hong and Rau-

denbush can be explicitly written as

probitðPIV Þ ¼ 0:32 �Y
un

c � 4:883 �Y
un

t þ 209:77: ð12Þ

where, in this context, �Y
un

t refers to the mean counterfactual reading

score of the promoted students had they been retained instead, and
�Y

un

c refers to the mean counterfactual reading score of the retained

students had they been promoted instead.

4. State belief about the mean counterfactual outcomes: This step asks

one to state and bound his belief about �Y
un

t and �Y
un

c . To best illustrate

this procedure, we form two beliefs about the mean counterfactual

outcomes.

4.1. The first belief: Given the inference of Hong and Raudenbush

(2005) mostly informed the mean counterfactual reading score of

the retained students (i.e., �Y
un

c ), we decide to bound �Y
un

t and

assume �Y
un

c ¼ 45:2. We choose this value because it is the grand

sample mean so that �Y
un

t � �Y
un

c measures the degree to which the

counterfactual reading scores deviate from the null hypothesis: d
¼ 0. The probit model equation (12) is thus simplified as follows:

probitðPIVÞ ¼ 224:28� 4:883 �Y
un

t : ð13Þ

In this case, one need to ask himself “what could the mean

reading score of the promoted students had they been retained

instead (i.e., �Y
un

t ) possibly be” when the mean reading score of

the retained students had they been promoted instead (i.e., �Y
un

c )

is assumed to be 45.2. It might be illuminating to reflect on the

counterfactual outcomes based on the belief about the average

retention effects for the retained students and for the promoted

students, identified by �Y
ob

t � �Y
un

c and �Y
un

t � �Y
ob

c , respectively.

For example, given the average retention effect for the retained

students is strongly negative (36.77–45.2 ¼ �8.43), it is rea-

sonable to think the average retention effect for the promoted

1959Li and Frank



students should be at least smaller than 0, as supported by

literature in recent years. This leads to the upper bound for
�Y

un

t as 45.78.

4.2. The second belief: First of all, we believe that the average

retention effects for the promoted students and for the retained

students should be both negative and the average retention

effect for the retained students, which was originally estimated

as �9 by Hong and Raudenbush, was overestimated. There-

fore, the plausible region is defined based on the bounded

belief that �Y
un

t � 45:78 and 36:77 � �Y
un

c � 45:78. Figure 2 is

used to illustrate the plausible region. Furthermore, we

strengthen this belief by assuming �Y
un

t � 45:2, which means

the mean reading score of the promoted students had they been

retained instead cannot exceed the grand sample mean.

The mean counterfactual reading score of the retained students
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Figure 2. The contour plot of the PIV in the plausible region (�Y
un
t : the Y axis; �Y

un
c : the

X axis). The plausible region is defined based on the belief that the average retention
effect for the promoted students should not be positive, and the average retention
effect for the retained students was overestimated, which means both �Y

un
t and �Y

un
c are

smaller than 45.78. The vertical dashed line corresponds to our first belief where
�Y

un
c ¼ 45:2.
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5. Bound the PIV: For the first belief, the lower bound for the PIV is

0.77 given �Y
un

t � 45:78 and �Y
un

c ¼ 45:2. This means, given our belief

that the mean reading score of the retained students had they been

promoted instead is 45.2 and the mean reading score of the promoted

students had they been retained instead is at most 45.78, the chance

that Hong and Raudenbush’s inference is robust for internal validity

is at least 77%. For the second belief, the lower bound of the PIV is

0.8 given �Y
un

t � 45:2 and 36:77 � �Y
un

c � 45:78. This means, given

our belief that the mean reading score of the retained students had

they been promoted instead is at most 45.2 and the average retention

effect for the retained students was negative but overestimated, the

chance that Hong and Raudenbush’s inference is robust for internal

validity is at least 80%.

6. Conclusion: To facilitate the decision-making process, one can use a

threshold about the PIV such that an inference is deemed robust for

internal validity whenever the PIV exceeds this threshold. Since the

PIV is the statistical power of retesting the null hypothesis: d ¼ 0

based on the ideal sample, one can use PIV ¼ 0.8 as the threshold

which is often used for strong statistical power (Cohen 1988, 1992).

Therefore, the two beliefs we formed in the fourth step would lead to

the conclusion that Hong and Raudenbush’s inference is robust for

internal validity. We caution readers that this conclusion might not

be hold if one has a different belief and/or a different threshold for

the PIV.

There are two key observations in Figure 2: First, in general, the PIV will be

more sensitive to �Y
un

t than �Y
un

c , which is probably due to the fact that the

promoted students predominated the observed sample. This indicates the

inference of Hong and Raudenbush is likely to be robust as long as kinder-

garten retention is believed to have stronger-than-minimal negative impact

on the promoted students. Second, even if the kindergarten retention has

minimal negative impact on the promoted students, the inference of Hong

and Raudenbush (2005) would still be robust for internal validity as long as

the average retention effect for the retained students was just slightly over-

estimated. For example, the lower bound of the PIV is 0.73 when the average

retention effect for the retained students was believed to be at least �8

( �Y
un

c � 44:77), which is one point smaller in size than the original estimate.

However, it would be risky to claim that the inference of Hong and Rauden-

bush (2005) is robust if kindergarten retention has a minimal impact on the

promoted students and a significantly overestimated negative impact on the
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retained students. For example, the lower bound of the PIV in this case would

drop below 0.64 for �Y
un

c � 44 and �Y
un

t � 45:78.

By definition, the PIV is the statistical power of retesting the null hypoth-

esis: d ¼ 0 versus the alternative hypothesis: d ¼ d̂
id

(d̂
id 6¼ 0), had the

counterfactual outcomes became observable. This is illustrated by Figure 3

made by fixing �Y
un

c ¼ 45:2. It is clear that, as �Y
un

t decreases, the estimate of

average treatment effect in the ideal sample (i.e., d̂
id ¼ �Y

id

t � �Y
id

c , see

(equation 6)) will be more extremely negative and resultantly the two

distributions will be further apart. The PIV will then grow larger as those

two distributions overlap less. Figure 3 demonstrates how the PIV is equiv-

alent to the statistical power when retesting the null hypothesis as if the

counterfactual outcomes were available.

Conclusion

Focusing on the mean counterfactual outcomes for treated and controlled

subjects, we began by defining the unobserved sample as the collection of

counterfactual outcomes and the ideal sample as the collection of all the

potential outcomes of the observed sample. It’s worth emphasizing that the

ideal sample is sufficient for securing internal validity, and based on the ideal

sample the null hypothesis is thought to be tested against the alternative

hypothesis. The PIV is thus defined in this scenario as the probability of

rejecting the same null hypothesis again in the ideal sample given it has been

rejected in the observed sample. This study recasts the assessment of internal

validity as the task of bounding the PIV for an inference based on a bounded

belief about the mean counterfactual outcomes.

This article makes three main contributions to the field: First, it promotes

counterfactual reasoning by prompting one to conceptualize the mean coun-

terfactual outcomes and form bounded belief about them. Counterfactual

reasoning is a necessary step of causal reasoning as it takes one to an ima-

ginary world of what could have happened, thanks to human strength in

thinking about cause (Pearl and Mackenzie 2018). Through counterfactual

reasoning, causal inference really boils down to comparing the means as one

explores all potential outcomes (Imbens and Rubin 2015). The PIV informs

internal validity by quantifying the likelihood of an inference would still hold

under all different scenarios of counterfactual reasoning. Second, the PIV has

an intuitive interpretation. It is the statistical power of retesting the hypoth-

esis H0 : d ¼ d0 versus Ha : d ¼ d̂
id

in the ideal sample. Therefore, the PIV

1963Li and Frank



is pragmatic as it informs how the mean counterfactual outcomes (and thus

internal validity) influence the validity of a decision. Third, the modeling

framework for the PIV is simple enough for empirical researchers and has

both frequentist and Bayesian flavors.

Future work should focus on extending this model in two aspects: First,

future work should revise the current model for subpopulations that are either

non-normal or heterogeneous in nature as the normality assumption is

unlikely to hold in this case. Second, built on the framework which informs

how counterfactuals affect the NHST through the PIV, future work needs to

delve deeper into why counterfactuals change, which may due to missing

confounders, the violation of Stable Unit Treatment Value Assumption

(SUTVA), or measurement error.
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